
Irish Collegiate Programming Competition 2015

Problem Set

University College Cork ACM Student Chapter

March 28, 2015

Instructions

Rules

• All mobile phones, laptops and other electronic devices must be powered off
and stowed away for the duration of the contest.

• The only networked resource that teams are permitted to access is the sub-
mission system.

• If a team discovers an ambiguity or error in a problem statement they should
tell an organiser. If the organisers agree that an ambiguity or error exists, a
clarification will be issued to all teams.

• No multi-threading is allowed, and no sub-processes.

• No file input/output is allowed. All input to your program will be provided
via standard input (stdin) and all output should be printed to standard output
(stdout). Examples of how to do this in each of the languages is provided in
the resources section of the submission site.

Submission Instructions

• The submission system URL is: http://4c245.ucc.ie:8080/

• Your password will be provided by the organisers. Please notify an organiser
if you are unable to log in.

• Submissions should consist of a single source file, not a compiled executable.

• To submit, click the “Submit a Solution” link, complete the submission form,
upload your source file, and click save.

• Your submission should now be listed in your submission queue.

• Java solutions should be a single source file and should not include the pack-
age header. The testing script will also be renaming your file to Pn.java

(where n is the problem number) and as such the main class for problem
1 should be defined as: public class P1 {...} and will be called with:
java P1 < input-file

1

http://4c245.ucc.ie:8080/


• C and C++ submissions will be compiled with the flags -lm -O2. C# sub-
missions will be run using mono since the test environment is running on
linux.

Testing and Scoring

• Solutions should be submitted in the form of source code, which will be
compiled on the test environment. A solution will be accepted if it compiles
on the test environment and produces the correct output for the sample inputs
given in the question.

• The output from your program should be terminated by a new line and should
not contain any additional whitespace at the beginning or end of lines.

• A solution will be tested against 10 separate test cases which are designed
to test the limits and corner cases of the inputs. One point is given for each
correct output.

• Programs are limited to one second of CPU time and 256MB of RAM.

• If a solution is submitted while an earlier solution to the same problem is still
in the queue, the earlier submission will not be tested. The earlier submission
will be marked with the message: “Old, not going to be tested”.

• In the event of a tie, the winning team will be the one who’s last scoring
submission was submitted earliest.

2



1 Margaret’s Minute Minute Manipulation

Margaret has always been a good maths student. She has been trying to apply the
principles of binary quantum refraction to time travel in her free time. By encoding
time in a binary format and adding a non negative time difference, δ, she is hoping
to create a singularity in the fabric of space and time allowing one to jump by the
amount δ into the future.

Time’s usual representation is the well known 24h format - e.g. 03:14:15. Al-
though there is several possible ways to represent time in a binary form, the con-
vention used throughout this exercise is as follows.

H H M M S S
0 0 0 0 0 0 8

Binary Clock Format 0 0 0 1 0 1 4
0 1 0 0 0 0 2
0 1 1 0 1 1 1
0 3 1 4 1 5

Figure 1: Binary Clock Format of time 03:14:15.

A 4× 6 matrix can be used to represent time in a binary format. Each decimal
digit of the 24h format is encoded separately using 4 bits. The decimal digits are
encoded in binary with the most significant bit on top, and the least significant at
the bottom. For instance, the decimal number 310 can be represented as 00112 in
a 4-digit binary format, i.e. (0× 23) + (0× 22) + (1× 21) + (1× 20) = 3.

Provided a time of day T and a time difference δ, both in the Binary Clock
format, you are to compute the time of day resulting from their summation, i.e.
T + δ.

Input The first 4 lines represent the time of day and the subsequent 4 lines rep-
resent the time delta. Both clocks are guaranteed to be a valid time ranging from
00:00:00 to 23:59:59 inclusively. We further assume a naive implementation of time
in which we do not care about time zones, leap seconds, nor the shifting effects of
daylight saving time.

Output The output should consist of the resulting time (T +δ) in the 4×6 matrix
Binary Clock format. This should immediately be followed by a newline.

Sample Input 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Sample Output 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

3



Sample Input 2

0 0 0 0 0 0

0 0 0 1 0 1

0 1 0 0 0 0

0 1 1 0 1 1

0 0 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 1 1 1 1

Sample Output 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 1 0

4



2 Ethel’s Encryption

Ethel suspected that the North Side Alliance (NSA) were spying on her communica-
tions with her sister Lucy. In order to thwart the NSA’s attempts, Ethel encrypted
all of their communications using a Caesar cipher.

A Caesar cipher is an encryption method where each letter in the plaintext is
shifted by an offset in order to produce the encrypted text. For example, given the
offset value of 2, A becomes C, B becomes D, Y becomes A, and so on.

Your task is to decrypt Ethel’s encrypted messages given that the offset is
calculated by ab.

Input The first line contains three integers n, a, and b. n is the number of
characters in the encrypted message, including spaces. The numbers a and b are
used to calculate the offset ab, with 0 ≤ a ≤ 231 and 0 ≤ b ≤ 216, however at least
a or b will be greater than 0 in each input.

The second line contains n characters representing the encrypted message. It is
guaranteed to only contain upper-case letters (A-Z) or spaces, and is immediately
followed by a newline.

Output The output should consist of a single line with the decrypted message in
upper-case characters. Note that space are preserved between the encrypted and
decrypted messages. This should immediately be followed by a newline.

Sample Input 1

11 3 3

IFMMP XPSME

Sample Output 1

HELLO WORLD

Sample Input 2

39 2 5

GT OTBKYZOMGZOUT UL ZNK RGCY UL

ZNUAMNZ

Sample Output 2

AN INVESTIGATION OF THE LAWS OF

THOUGHT

5



3 Boolean Postfix

Figure 2: An Investigation of
the Laws of Thought by George
Boole, Professor of Mathematics in
Queen’s College, Cork, published
1854.

Logical Boolean expressions are typically rep-
resented using infix notation, where the oper-
ators (∧,∨) are placed between the operands.
For example, ((a∧b)∨¬c) states that for the
expression to be true, both a and b should
be true, or c should be false. In her mathe-
matics, Mary Lucy Margret uses an alternate
form, where the operator is placed after the
operands, called postfix notation. For exam-
ple, the above expression could be written in
postfix notation as: (a b ∧ c ¬ ∨).

Your task is to write a program to parse
and evaluate Mary Lucy Margret’s Boolean
expressions, which are represented in postfix
notation. You can be confident in her math-
ematics; you are guaranteed to be given cor-
rect and valid expressions.

Input The first line of input contains a sin-
gle integer T representing the number of ex-
pressions. Each of the next T lines contains
a single Boolean formula in postfix notation.
The line starts with a single integer n rep-
resenting the number of tokens, with the re-
mainder of the line containing n tokens, each
separated by a single space.

The tokens 1 and 0 are used to denote Boolean truth values true and false
respectively, and uppercase characters are used to denote the operators. Thus, the
set of possible tokens are:

1 for Boolean true,

0 for Boolean false,

A for logical and,

R for logical or,

X for logical exclusive-or,

N for logical negation.

Output The output should consist of T lines where each line contains a 1 if the
corresponding expression evaluates to true, or 0 otherwise.

Sample Input 1

3

3 0 1 R

3 0 0 R

7 1 0 A 1 R N N

Sample Output 1

1

0

1

Sample Input 2

4

9 0 0 A 0 N 0 N A R

9 0 1 A 0 N 1 N A R

9 1 0 A 1 N 0 N A R

9 1 1 A 1 N 1 N A R

Sample Output 2

1

0

0

1

6



4 Wonowon

There is a little village in northern Canada called Wonowon, its name coming from
the fact that it is located at Mile 101 of the Alaska Highway. While passing through
this village, a wandering mathematician had an idea for a new type of number, which
he called a wonowon number. He defined a wonowon number as a number whose
decimal digits start and end with 1, and alternate between 0 and 1. Thus, the first
four wonowon numbers are 101, 10101, 1010101, 101010101.

Neither 2 nor 5 can divide any wonowon number, but it is conjectured that every
other prime number divides some wonowon number. For example, 3 divides 10101
(i.e. 3×3367), 7 divides 10101 (i.e. 7×1443), 11 divides 101010101010101010101
(i.e. 11× 9182736455463728191).

Assume throughout that this conjecture is true, and let W (p) denote the number
of digits in the smallest wonowon number divisible by p. Thus, for example, W (3) =
5, W (7) = 5, W (11) = 21, W (13) = 5, W (17) = 15, W (19) = 17.

It has been found experimentally that for many primes p, W (p) = p− 2 (as in
the case for p = 7, 17, 19). Thus, your task is to write a program which reads an
integer n and outputs the number of primes for which W (p) = p− 2. Note that p
cannot be 2 nor 5, and p is a prime number less-than or equal to n.

Input The input consists of a single integer 3 ≤ n ≤ 10000.

Output The output should consist of a single integer representing the number of
primes p for which W (p) = p− 2.

Sample Input 1

20

Sample Output 1

3

Sample Input 2

100

Sample Output 2

14

7



5 Alicia’s Afternoon Amble

0 1 2 3 4 5 6
0

1

2

3

4

5

Figure 3: The locations and optimal
solution for sample input 1.

Alicia is staying in a hotel on the edge of
town. She sets out in the morning with a
list of landmarks to visit all across the city.
This day of sightseeing will take her through
the city, visiting a number of locations, all
the way to the far-side of city where she
will pause for lunch at the prestigious Pete’s
Polygon Pizza Parlour. Anything she misses
must be visited on the return trip to the
hotel in the evening.

Given the set of locations that Alicia
would like to visit, find the length of the
shortest tour which starts at her hotel, vis-
its each of the locations, and returns back
to the hotel. Beside the starting location, each location should be visited exactly
once.

The starting hotel will be located at the leftmost x-coordinate. From there, the
optimal path should visit locations at strictly increasing x-coordinates until Pete’s
Parlour is reached at the rightmost x-coordinate. From here, the optimal return
path should visit any and all unseen locations in strictly decreasing x-coordinates.
Note that the x-coordinate of each location will be unique.

Input The (x, y) coordinates of all locations are given as integers on a Euclidean
plane. The first line of input contains a single integer n, 1 ≤ n ≤ 1000, representing
the number of locations. Each of the next n lines contains two integers x and y,
0 ≤ x, y ≤ 100000, representing the coordinates of the n locations.

Output The output should consist of a single decimal containing the the total
length of the tour rounded to two decimal places. This should immediately be
followed by a newline.

Sample Input 1

5

1 3

2 1

3 4

4 4

5 2

Sample Output 1

10.87

Sample Input 2

10

4 1

13 4

21 3

25 9

28 10

42 1

43 2

50 4

67 10

68 9

Sample Output 2

131.65

8


	Margaret's Minute Minute Manipulation
	Ethel's Encryption
	Boolean Postfix
	Wonowon
	Alicia's Afternoon Amble

